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Introduction

• Interpretability is the ability to provide human-understandable
insights on the decision process of an AI system

Regarding data-driven AI systems (aka Machine Learning), two primary
problem settings for interpretability in literature:

1. Post-hoc approaches

2. Interpretability by design

We propose a novel framework FLINT – primarily designed to jointly learn
a pair of networks (predictor, interpreter), it can be specialized to enable
post-hoc interpretability, when a (trained) prediction network is available.
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FLINT and related works

Key aspects of FLINT

• Means of interpretation: high-level features/concepts.

• Scope of interpretation: Local AND Global.

Immediate related works to FLINT

1. Jointly learning predictor & interpreter: GAME – Lee et al (Local
interpreter for each sample)

2. Using concepts for interpretation: SENN (Alvarez-Melis &
Jaakkola), TCAV-based approaches

3. Applicability to both by-design & post-hoc problems: None



Supervised Learning with Interpretation (SLI)

• Generic task SLI: Considers prediction and interpretation as separate
tasks with dedicated models f and g .

• Optimization problem:

arg min
f∈F,g∈Gf

Lpred(f ,S) + Lint(f , g ,S)

• F is the space of predictive models. Gf is family of interpreter
models dependent on f .

• Our goal is to address SLI when F instantiated with deep neural
networks and task is multi-class classification.
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Specializing SLI: Post-hoc interpretation

• A special case with f = f̂ is fixed and we only learn g .

• Optimization problem:

arg min
g∈Gf
Lint(f , g ,S),

(No gradients are backpropagated to f .)



Design of FLINT

FLINT: Framework to Learn INTerpretable networks

Figure: System Overview

• Interpreter g(x) = h ◦Ψ ◦ fI(x) = h ◦ Φ(x) := softmax(W TΦ(x)).
Computes composition of attribute functions Φ(x) and interpretable
function h characterized by weight matrix W .

• Attribute dictionary: functions φj : X → R+, j = 1, . . . J. φj(x) is
activation of some high level attribute, i.e. a ”concept” over X .
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Losses for Interpretability
• Fidelity to output: Lof (f , g ,S) = −

∑
x∈S h(Φ(x))T log(f (x))

• Conciseness and Diversity : Only a small number of attributes should
activate (Conciseness). However, multiple attributes should be
utilized across multiple samples (Diversity). Use of entropy (Jain et
al)

Φ̄S =
1

|S|
∑
x∈S

Φ(x)

Lcd(Φ,S) = −E(Φ̄S) +
∑
x∈S
E(Φ(x)) +

∑
x∈S

η‖Φ(x)‖1

• Fidelity to input (via d). To promote encoding high-level patterns,
relevant to input, use of autoencoder. (Melis & Jaakkola, 2018):

Lif (d ,Φ, f ,S) =
∑
x∈S

(d(Φ(x))− x)2

• Complete interpretability loss term:

Lint(f ,Φ, h, d ,S) = βLof (f ,Φ, h,S) + γLif (Φ, h, d ,S) + δLcd(Φ,S)



Losses for Interpretability
• Fidelity to output: Lof (f , g ,S) = −

∑
x∈S h(Φ(x))T log(f (x))

• Conciseness and Diversity : Only a small number of attributes should
activate (Conciseness).

However, multiple attributes should be
utilized across multiple samples (Diversity). Use of entropy (Jain et
al)

Φ̄S =
1

|S|
∑
x∈S

Φ(x)

Lcd(Φ,S) = −E(Φ̄S) +
∑
x∈S
E(Φ(x)) +

∑
x∈S

η‖Φ(x)‖1

• Fidelity to input (via d). To promote encoding high-level patterns,
relevant to input, use of autoencoder. (Melis & Jaakkola, 2018):

Lif (d ,Φ, f ,S) =
∑
x∈S

(d(Φ(x))− x)2

• Complete interpretability loss term:

Lint(f ,Φ, h, d ,S) = βLof (f ,Φ, h,S) + γLif (Φ, h, d ,S) + δLcd(Φ,S)



Losses for Interpretability
• Fidelity to output: Lof (f , g ,S) = −

∑
x∈S h(Φ(x))T log(f (x))

• Conciseness and Diversity : Only a small number of attributes should
activate (Conciseness). However, multiple attributes should be
utilized across multiple samples (Diversity). Use of entropy (Jain et
al)

Φ̄S =
1

|S|
∑
x∈S

Φ(x)

Lcd(Φ,S) = −E(Φ̄S) +
∑
x∈S
E(Φ(x)) +

∑
x∈S

η‖Φ(x)‖1

• Fidelity to input (via d). To promote encoding high-level patterns,
relevant to input, use of autoencoder. (Melis & Jaakkola, 2018):

Lif (d ,Φ, f ,S) =
∑
x∈S

(d(Φ(x))− x)2

• Complete interpretability loss term:

Lint(f ,Φ, h, d ,S) = βLof (f ,Φ, h,S) + γLif (Φ, h, d ,S) + δLcd(Φ,S)



Losses for Interpretability
• Fidelity to output: Lof (f , g ,S) = −

∑
x∈S h(Φ(x))T log(f (x))

• Conciseness and Diversity : Only a small number of attributes should
activate (Conciseness). However, multiple attributes should be
utilized across multiple samples (Diversity). Use of entropy (Jain et
al)

Φ̄S =
1

|S|
∑
x∈S

Φ(x)

Lcd(Φ,S) = −E(Φ̄S) +
∑
x∈S
E(Φ(x)) +

∑
x∈S

η‖Φ(x)‖1

• Fidelity to input (via d). To promote encoding high-level patterns,
relevant to input, use of autoencoder. (Melis & Jaakkola, 2018):

Lif (d ,Φ, f ,S) =
∑
x∈S

(d(Φ(x))− x)2

• Complete interpretability loss term:

Lint(f ,Φ, h, d ,S) = βLof (f ,Φ, h,S) + γLif (Φ, h, d ,S) + δLcd(Φ,S)



Losses for Interpretability
• Fidelity to output: Lof (f , g ,S) = −

∑
x∈S h(Φ(x))T log(f (x))

• Conciseness and Diversity : Only a small number of attributes should
activate (Conciseness). However, multiple attributes should be
utilized across multiple samples (Diversity). Use of entropy (Jain et
al)

Φ̄S =
1

|S|
∑
x∈S

Φ(x)

Lcd(Φ,S) = −E(Φ̄S) +
∑
x∈S
E(Φ(x)) +

∑
x∈S

η‖Φ(x)‖1

• Fidelity to input (via d). To promote encoding high-level patterns,
relevant to input, use of autoencoder. (Melis & Jaakkola, 2018):

Lif (d ,Φ, f ,S) =
∑
x∈S

(d(Φ(x))− x)2

• Complete interpretability loss term:

Lint(f ,Φ, h, d ,S) = βLof (f ,Φ, h,S) + γLif (Φ, h, d ,S) + δLcd(Φ,S)



Losses for Interpretability
• Fidelity to output: Lof (f , g ,S) = −

∑
x∈S h(Φ(x))T log(f (x))

• Conciseness and Diversity : Only a small number of attributes should
activate (Conciseness). However, multiple attributes should be
utilized across multiple samples (Diversity). Use of entropy (Jain et
al)

Φ̄S =
1

|S|
∑
x∈S

Φ(x)

Lcd(Φ,S) = −E(Φ̄S) +
∑
x∈S
E(Φ(x)) +

∑
x∈S

η‖Φ(x)‖1

• Fidelity to input (via d). To promote encoding high-level patterns,
relevant to input, use of autoencoder. (Melis & Jaakkola, 2018):

Lif (d ,Φ, f ,S) =
∑
x∈S

(d(Φ(x))− x)2

• Complete interpretability loss term:

Lint(f ,Φ, h, d ,S) = βLof (f ,Φ, h,S) + γLif (Φ, h, d ,S) + δLcd(Φ,S)



Generating Interpretations

How do we get local and global interpretability from our trained model?

1. Importance of attribute in prediction of a sample (rj,x): Obtain this
via attribute activation φj(x) and weight for that attribute wj,ŷ .

rj,x =
αj,ŷ ,x

maxi |αi,ŷ ,x |
, αj,ŷ ,x = φj(x).wj,ŷ

2. Average out rj,x for many samples with same predicted class to get a
global picture of class-attribute relationships rj,c .

rj,c =
1

|Sc |
∑
x∈Sc

rj,x ,Sc = {x ∈ S|ŷ = c}

3. Understanding concept encoded by an attribute.

1 + 3 −→ local interpretability

2 + 3 −→ global interpretability
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, αj,ŷ ,x = φj(x).wj,ŷ
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Generating Interpretations

Last piece: How do we understand concept encoded by an attribute φj?

Figure: Flow to understand encoded concept by attribute φj

• Compute global relevance rj,c (for each class c)

• Select relevant class-attribute pairs by thresholding rj,c

• Analyze each pair by repeating this:

Select samples of class c maximally activating φj (MAS)

Use Activation Maximization w/ Partial Initialization (AM+PI) as
tool – optimizes weakly initialized input to maximally activate φj

• Can use AM+PI to analyze any sample for local interpretations.
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Datasets & Networks

• MNIST – LeNet

• FashionMNIST – LeNet

• CIFAR10 – ResNet

• QuickDraw (Hand sketch recognition) – ResNet

10000 random images for 10 classes: ’Ant’, ’Apple’, ’Banana’,
’Carrot’, ’Cat’, ’Cow’, ’Dog’, ’Frog’, ’Grapes’, ’Lion’.

8000 images for training, 2000 for testing.

• Additional results on CIFAR100, CUB-200 (ResNet18)



Quantitative Evaluation

• Accuracy: Two goals regarding this

Comparison to other related interpretable NN architectures

Training f & g jointly does not negatively affect performance.

• Fidelity of interpreter: Fraction of samples where prediction of g is
same as f .

• Conciseness of interpretations: Average number of attributes
”important” to interpretations.

CNSg ,x = |{j : |rj,x | > 1/τ}|



Results – Quantitative I

BASE-f SENN PrototypeDNN FLINT-f FLINT-g

MNIST 98.9±0.1 98.4±0.1 99.2 98.9±0.2 98.3±0.2
FashionMNIST 90.4±0.1 84.2±0.3 90.0 90.5±0.2 86.8±0.4
CIFAR10 84.7±0.3 77.8±0.7 – 84.5±0.2 84.0±0.4
QuickDraw 85.3±0.2 85.5±0.4 – 85.7±0.3 85.4±0.1

Table: Accuracy (in %) on different datasets. BASE-f is system trained with
just accuracy loss. FLINT-f , FLINT-g denote the predictor and interpreter
trained in our framework.

Dataset LIME VIBI FLINT-g

MNIST 95.6±0.4 96.6±0.7 98.7±0.1
FashionMNIST 67.3±1.3 88.4±0.3 91.5±0.1
CIFAR-10 31.5±0.9 65.5±0.3 93.2±0.2
QuickDraw 76.3±0.1 78.6±0.4 90.8±0.4

Table: Results for fidelity to FLINT-f (in %)



Results – Quantitative II

• Evaluate conciseness by measuring the average number of important
concepts/attributes in generated interpretations.

• Conciseness for a given sample x , CNSg ,x , = |{j : |rj,x | > 1/τ}|.
• For different thresholds 1/τ , compute mean of CNSg ,x over test data

Figure: (Left) Conciseness comparison with SENN. (Right) Effect of entropy
and different `1 regularization strength on conciseness on QuickDraw



Global Interpretations I

(a) Global relevances (rj,c ) for all
class-attribute pairs for QuickDraw

(b) Sample class-attribute pairs with
high relevance



Global Interpretations II

Figure: Example attribute φ120 on CUB-200, detecting blue faced birds



Global Interpretations II

Lazuli Bunting

Painted Bunting

Blue-headed

 Vireo

Indigo Bunting

Blue Grosbeak

MAS 1 AM+PI 1 MAS 2 AM+PI 2 MAS 3 AM+PI 3

Figure: Example attribute φ120 on CUB-200, detecting blue faced birds



Local Interpretations

Figure: Local interpretation example. True label ’Cow’
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Local Interpretations

Cow
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Figure: Local interpretation example. True label ’Cow’
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Meaningfulness of Learnt Attributes

• We further conducted Subjective evaluation with 20 participants
to evaluate meaningfulness of attributes and their visualizations.

• Each participant shown visualizations of 10 attributes (covering 17
class-attribute pairs) from QuickDraw dataset and a textual
description.

• For each attribute, asked to indicate their agreement/disagreement
if description meaningfully associates to visualizations (Choices:
Strongly Agree (SA), Agree (A), Disagree (D), Strongly Disagree
(SD), Don’t Know (DK)). 40% incorrect descriptions were manually
added.

• Results: For correct descriptions: 77.5% – SA/A, 10.0% – DK,
12.5% – D/SD. For incorrect descriptions: 83.7% – D/SD, 7.5% –
DK, 8.8% – SA/A.
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Post-hoc interpretations
Interpreting the BASE-f model (trained only for accuracy).

Dataset VIBI FLINT-g

MNIST 95.8±0.2 98.6±0.2
FashionMNIST 88.4±0.2 92.8±0.3
CIFAR10 64.2±0.3 89.1±0.5
QuickDraw 78.0±0.4 90.5±0.3

Table: Fidelity for post-hoc interpretations of BASE-f (in %)

Figure: Conciseness plots for post-hoc interpretations



Perspectives I

Summary: FLINT is a novel framework to jointly learn predictor and
interpreter network. The interpreter provides local and global
interpretability in terms of high-level attributes.
Different usages of FLINT:

• by-design: Learning a pair (predictor, interpreter) of networks,
provide global interpretation of classes, provide local interpretation
when predictor and interpreter agree

• Post-hoc: interpret a known network

Promising use of FLINT Retaining only the interpreter as the final
prediction model: fully-faithful and reduced complexity.
Important: the so-called prediction network is useful to provide proper
data representation.



Perspectives II

Future Directions

• Additional constraints: To enforce properties on attributes such as
stability, adversarial robustness, invariance to transformations etc.

• Faithfulness of g to f – Studying its evaluation, enforcement.

• Evaluation strategies: To compare between methods using
different means of explanations.



Perspectives III

There is also a possibility to apply/modify the framework for application
to other input modalities, models or tasks

• Input modality: Eg. audio, video, text, graphs.

• Models/Tasks: graph-CNNs, structured prediction energy networks
(SPEN) or more generally tasks like regression, structured
prediction, reinforcement learning etc.

• The key modification here is to redesign method to generate
interpretations: That is designing high-level units of interpretation
suitable to the task, revising constraints and method to understand
them accordingly.



The End

THANK YOU!

Most of the presentation based on A Framework to Learn with Interpretation. arXiv
preprint arXiv:2010.09345 (Presented at NeurIPS 2021)
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Appendix 1: Effect of autoencoder
Training without autoencoder affects the attributes. The learnt attributes
are more inconsistent in detected patterns. This makes it hard to
understand them.

MAS	1 AM+PI	1 MAS	2 AM+PI	2GBP	1 GBP	2

	Cat	--

	Frog	--

	Frog	--

	Apple	--

	Ant	--

	Banana	--

	Banana	--

	Grapes	--

Figure: Sample attribute interpretations without any autoencoder. GBP stands
for Guided Backpropagation



Appendix 2: Effect of J - Quantitative

Lif (train) Lof (train) Fidelity (test) (%)

J = 4 0.058 0.57 87.4

J = 8 0.053 0.23 97.5

J = 25 0.029 0.16 98.8

Table: Effect of J for MNIST with LeNet.

Lif (train) Lof (train) Fidelity (test) (%)

J = 4 0.094 2.08 19.5

J = 8 0.079 1.48 57.6

J = 24 0.069 0.34 90.8

Table: Effect of J for QuickDraw with ResNet.



Appendix 3: Effect of J - Qualitative

Figure: Global class attribute relevances for model with J = 4 on MNIST.

MAS	1 AM+PI	1 MAS	2 AM+PI	2 MAS	3 AM+PI	3

	Three	--

	Seven	--

	Five	--

Figure: Interpretation for attribute φ2 for model learn on MNIST with J = 4.



Appendix 4: Relevant class-attribute pairs

• For a sample x with predicted class ĉ (by the interpreter), we define
the total contribution of attribute j as αj,ĉ,x = φj(x

I).wj,ĉ , where
wj,ĉ are weights of linear classifier h.

• The importance of attribute j , for predicting class ĉ , for sample x is,
rj,ĉ,x =

αj,ĉ,x

maxi |αi,ĉ,x | . To estimate rj,c , compute mean of rj,ĉ,x for

samples x where predicted class ĉ = c . That is,
rj,c =

∑
{x∈Srnd |ĉ=c} rj,ĉ,x (Srnd is random subset of the training set).

• To select relevant class-attribute pairs, we simply threshold rj,c for
each (j , c). For each such selected pair we analyze the attribute’s
maximum activating samples (MAS) from the class.



Appendix 5: How to use other tools

Cow	--

MAS	1 GBP	1 AM+PI MAS	2 GBP	2 AM+PI MAS	3 GBP AM+PI

Cat	--

Cat	--

Decoder	Images
withoutwith

Decoder	Images
withoutwith

Decoder	Images
withoutwith

Figure: Examples of class-attribute pairs for decoder assistance

	Dog	--

					Lion	--

MAS	1 GBP	1 AM+PI MAS	2 GBP	2 AM+PI MAS	3 GBP AM+PI
Decoder	Images

withoutwith
Decoder	Images

withoutwith
Decoder	Images

withoutwith

Figure: Examples of class-attribute pairs for input attribution assistance



Appendix 6: Disagreement analysis
What if the predictor and interpreter disagree in their outputs?

• if the class predicted by f is among the top predicted classes of g ,
the disagreement is acceptable to some extent as the attributes can
still potentially interpret the prediction of f .

• The worse kind of samples – where prediction of f is not among top
predictions of g , and even worse are where, in addition to this, f
predicts the true label.

• Measure top-k fidelity. For QuickDraw: top-2 – 94.7%, top-3 –
96.9%, and top-4 – 98.2%



Appendix 7: Importance of Attributes

• To test how crucial the learnt attributes are to predictions of
FLINT-g and SENN, we shuffle the attribute values Φ(x) for each
sample x and calculate the drop in prediction accuracy.

• Extreme test, therefore a significant drop in accuracy is expected

Dataset SENN FLINT-g

MNIST 0.5 87.6
FashionMNIST 10.9 76.6
CIFAR-10 17.5 74.4
QuickDraw 0.3 74.9

Table: FLINT and SENN accuracy drop for shuffled attributes (in %)


