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Introduction

® |nterpretability is the ability to provide human-understandable
insights on the decision process of an Al system

Regarding data-driven Al systems (aka Machine Learning), two primary
problem settings for interpretability in literature:

1. Post-hoc approaches
2. Interpretability by design

We propose a novel framework FLINT — primarily designed to jointly learn
a pair of networks (predictor, interpreter), it can be specialized to enable
post-hoc interpretability, when a (trained) prediction network is available.




FLINT and related works

Key aspects of FLINT

® Means of interpretation: high-level features/concepts.

® Scope of interpretation: Local AND Global.
Immediate related works to FLINT

1. Jointly learning predictor & interpreter: GAME — Lee et al (Local
interpreter for each sample)

2. Using concepts for interpretation: SENN (Alvarez-Melis &
Jaakkola), TCAV-based approaches

3. Applicability to both by-design & post-hoc problems: None
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Supervised Learning with Interpretation (SLI)

® Generic task SLI: Considers prediction and interpretation as separate
tasks with dedicated models f and g.

® Optimization problem:

arg  min  Lpeq(f,S) + Line(f,g,S)

feF,g€Gr
Predictor
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g
Interpreter

® F is the space of predictive models. Gr is family of interpreter
models dependent on f.

® QOur goal is to address SLI when F instantiated with deep neural
networks and task is multi-class classification.




Specializing SLI: Post-hoc interpretation

Predictor
f

g

Interpreter

* A special case with f = 7 is fixed and we only learn g.
® Optimization problem:

argg[gigfjf »Cint(f, g, 8)7

(No gradients are backpropagated to f.)




Design of FLINT

FLINT: Framework to Learn INTerpretable networks
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Computes composition of attribute functions ®(x) and interpretable
function h characterized by weight matrix W.
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Losses for Interpretability
* Fidelity to output: Lof(f,g,8) = — >, c5 h(P(x)) log(f(x))

® Conciseness and Diversity: Only a small number of attributes should
activate (Conciseness). However, multiple attributes should be
utilized across multiple samples (Diversity). Use of entropy (Jain et

al)
®s =15 52 %0)

xX€ES
Leg(9,8) = =E(®s) + Y E(@(x) + Y _nl®(x)[lx
xXES xXES

® Fidelity to input (via d). To promote encoding high-level patterns,
relevant to input, use of autoencoder. (Melis & Jaakkola, 2018):

Lir(d,®,f,8) =Y (d(d(x)) - x)?
x€S
® Complete interpretability loss term:

ﬁint(f, (‘Da ha d78) = ﬁﬁof(fa (D, ha S) +’7‘Cl'f(q)7 h7 daS) + 5£Cd(¢38)
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Generating Interpretations

How do we get local and global interpretability from our trained model?

1.

Importance of attribute in prediction of a sample (rj ): Obtain this
via attribute activation ¢;(x) and weight for that attribute w; ;.

Qj.9,x

_ = bilx).wi o
maX;|Ozi’y,x|7aJ’y’X bj(x)-w; p

. Average out rj . for many samples with same predicted class to get a

global picture of class-attribute relationships r; ..

1
ljc= S Z lix,Se ={x € Sly =c}

XES,

. Understanding concept encoded by an attribute.

1 + 3 — local interpretability
2 + 3 —> global interpretability
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® Compute global relevance r; . (for each class c)

TeLECoM




Generating Interpretations

Last piece: How do we understand concept encoded by an attribute ¢;?

@>\A Relevance ) Threshold Set of relevant
= - class-attribute
e rie > (1/7) pairs
b

Figure: Flow to understand encoded concept by attribute ¢;

® Compute global relevance r; . (for each class c)

® Select relevant class-attribute pairs by thresholding r;




Generating Interpretations

Last piece: How do we understand concept encoded by an attribute ¢;?

Relevance
D/ Tie

Figure: Flow to understand encoded concept by attribute ¢;

Threshold Set of relevant
class-attribute
pairs

Analyze
each pair

?;

® Compute global relevance r; . (for each class c)
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Generating Interpretations

Last piece: How do we understand concept encoded by an attribute ¢;?
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Figure: Flow to understand encoded concept by attribute ¢;

Compute global relevance r; . (for each class c)

Select relevant class-attribute pairs by thresholding r;

® Analyze each pair by repeating this:
m Select samples of class ¢ maximally activating ¢; (MAS)

m Use Activation Maximization w/ Partial Initialization (AM+PI) as
tool — optimizes weakly initialized input to maximally activate ¢;

Can use AM+-PI to analyze any sample for local interpretations.
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Datasets & Networks

MNIST — LeNet

FashionMNIST — LeNet

CIFAR10 — ResNet

QuickDraw (Hand sketch recognition) — ResNet

= 10000 random images for 10 classes: 'Ant’, 'Apple’, 'Banana’,
"Carrot’, 'Cat’, 'Cow’, 'Dog’, 'Frog’, 'Grapes', 'Lion’.

m 8000 images for training, 2000 for testing.

Additional results on CIFAR100, CUB-200 (ResNet18)




Quantitative Evaluation

® Accuracy: Two goals regarding this
m Comparison to other related interpretable NN architectures

m Training f & g jointly does not negatively affect performance.

® Fidelity of interpreter: Fraction of samples where prediction of g is
same as f.

® Conciseness of interpretations: Average number of attributes
"important” to interpretations.

CNSgx = [{J = [1j.x

> 1/7}




Results — Quantitative |

BASE-f SENN PrototypeDNN FLINT-f FLINT-g
MNIST 98.94+0.1 98.4+£0.1 99.2 98.94+0.2  98.31+0.2
FashionMNIST = 90.4+£0.1  84.24+0.3 90.0 90.5+0.2 86.8+0.4
CIFAR10 84.7+0.3  77.8+0.7 - 84.5+£0.2 84.0+0.4
QuickDraw 85.3+0.2 85.5+0.4 - 85.7+£0.3 85.4+0.1

Table: Accuracy (in %) on different datasets. BASE-f is system trained with
just accuracy loss. FLINT-f, FLINT-g denote the predictor and interpreter
trained in our framework.

Dataset LIME VIBI FLINT-g
MNIST 95.6+0.4 96.6+0.7 98.7+0.1
FashionMNIST 67.3£1.3 88.44+0.3 91.5+0.1
CIFAR-10 31.5+0.9 65.54+0.3 93.24+0.2
QuickDraw 76.3+0.1 78.6+0.4 90.8+0.4

Table: Results for fidelity to FLINT-f (in %)




Results — Quantitative |l
® Evaluate conciseness by measuring the average number of important
concepts/attributes in generated interpretations.
® Conciseness for a given sample x, CNS; ., = |[{j : |rj <] > 1/7}|.

® For different thresholds 1/7, compute mean of CNSg « over test data

Figure: (Left) Conciseness comparison with SENN. (Right) Effect of entropy
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Global Interpretations |

Class-attribute relevances
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o O @&
SRR 0@9@ N4

(a) Global relevances (rj ) for all

class-attribute pairs for QuickDraw

10

MAS1 AM+PI1 MAS2 AM+PI2 MAS3 AM+PI3

Dog

Empu"over
f

FashionMNIST

QuickDraw
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Figure: Example attribute ¢120 on CUB-200,
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Local Interpretations

Figure: Local interpretation example. True label 'Cow’




Local Interpretations

Figure: Local interpretation example. True label 'Cow’




Local Interpretations

Figure: Local interpretation example. True label 'Cow’




Local Interpretations

Figure: Local interpretation example. True label 'Cow’
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Meaningfulness of Learnt Attributes

® We further conducted Subjective evaluation with 20 participants
to evaluate meaningfulness of attributes and their visualizations.

® Each participant shown visualizations of 10 attributes (covering 17
class-attribute pairs) from QuickDraw dataset and a textual
description.

® For each attribute, asked to indicate their agreement/disagreement
if description meaningfully associates to visualizations (Choices:
Strongly Agree (SA), Agree (A), Disagree (D), Strongly Disagree
(SD), Don't Know (DK)). 40% incorrect descriptions were manually
added.

® Results: For correct descriptions: 77.5% — SA/A, 10.0% — DK,
12.5% — D/SD. For incorrect descriptions: 83.7% — D/SD, 7.5% —
DK, 8.8% — SA/A.




Post-hoc interpretations
Interpreting the BASE-f model (trained only for accuracy).

Dataset VIBI FLINT-g
MNIST 95.84+0.2 98.6+0.2
FashionMNIST  88.4+0.2  92.840.3
CIFAR10 64.2+0.3 89.1+0.5
QuickDraw 78.0+0.4  90.5+0.3

Table: Fidelity for post-hoc interpretations of BASE-f (in %)

FLINT post-hoc conciseness

300 MNIST
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QuickDraw
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Average number of relevant attributes
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Figure: Conciseness plots for post-hoc interpretations



Perspectives |

Summary: FLINT is a novel framework to jointly learn predictor and
interpreter network. The interpreter provides local and global
interpretability in terms of high-level attributes.

Different usages of FLINT:

® by-design: Learning a pair (predictor, interpreter) of networks,
provide global interpretation of classes, provide local interpretation
when predictor and interpreter agree

® Post-hoc: interpret a known network

Promising use of FLINT Retaining only the interpreter as the final
prediction model: fully-faithful and reduced complexity.

Important: the so-called prediction network is useful to provide proper
data representation.

TeLECoM




Perspectives Il

Future Directions

® Additional constraints: To enforce properties on attributes such as
stability, adversarial robustness, invariance to transformations etc.

® Faithfulness of g to f — Studying its evaluation, enforcement.

® Evaluation strategies: To compare between methods using
different means of explanations.




Perspectives ll|

There is also a possibility to apply/modify the framework for application
to other input modalities, models or tasks

® Input modality: Eg. audio, video, text, graphs.

® Models/Tasks: graph-CNNs, structured prediction energy networks
(SPEN) or more generally tasks like regression, structured
prediction, reinforcement learning etc.

® The key modification here is to redesign method to generate
interpretations: That is designing high-level units of interpretation
suitable to the task, revising constraints and method to understand
them accordingly.




The End

THANK YOU!

Most of the presentation based on A Framework to Learn with Interpretation. arXiv
preprint arXiv:2010.09345 (Presented at NeurlPS 2021)
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Appendix 1: Effect of autoencoder
Training without autoencoder affects the attributes. The learnt attributes
are more inconsistent in detected patterns. This makes it hard to
understand them.

MAS1 GBP1 AM+PI GBP2 AM+PI2
=
|
A

Cat - 12

Frog — ¢

Banana - ¢33

Grapes - ¢ xy,
(=,

Figure: Sample attribute interpretations without any autoencoder. GBP stands
for Guided Backpropagation




Appendix 2: Effect of J - Quantitative

Lir (train) Lo (train)  Fidelity (test) (%)

J=4 0.058 0.57 87.4
J=28 0.053 0.23 97.5
J=25 0.029 0.16 98.8

Table: Effect of J for MNIST with LeNet.

Lir (train) Lo (train)  Fidelity (test) (%)

J=4 0.094 2.08 195
J=28 0.079 1.48 57.6
J=24 0.069 0.34 90.8

Table: Effect of J for QuickDraw with ResNet.




Appendix 3: Effect of J - Qualitative

Class-attribute relevances
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Figure: Global class attribute relevances for model with J = 4 on MNIST.
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Figure: Interpretation for attribute ¢ for model learn on MNIST with J = 4.




Appendix 4: Relevant class-attribute pairs

® For a sample x with predicted class & (by the interpreter), we define
the total contribution of attribute j as aj e x = ¢;(x%).w; ¢, where
w;j e are weights of linear classifier h.

® The importance of attribute j, for predicting class ¢, for sample x is,
riex = W To estimate rj ., compute mean of r; ¢ , for
samples x where predicted class ¢ = ¢. That is,
lie = Z{xesmd\e:c} rj.e,x (Srd is random subset of the training set).

® To select relevant class-attribute pairs, we simply threshold r; . for
each (j, ¢). For each such selected pair we analyze the attribute's
maximum activating samples (MAS) from the class.

Decoder Images Decoder Images Decoder Images
1 Grad1 with¢; withoutg; AM+PI MAS2 Grad2 with¢; withouté; AM+PI MAS3 Grad3 with¢; without¢; AM+PI
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Appendix 5: How to use other tools

Decoder Images Decoder Images Decoder Images

MAST GBP1 g, wiouté; AMHPI MAS2 GBP2 i, wimouts, AMHPI MAS3  GBP o wimoué, AM+PI

Figure: Examples of class-attribute pairs for decoder assistance

Decoder Images Decoder Images Decoder Images
MAS1 GBP1 with withouts, AM+PI MAS2 GBP2 withd; withouté; AM+PI MAS3 GBP  withd, withoutd; AM+PI

Figure: Examples of class-attribute pairs for input attribution assistance
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Appendix 6: Disagreement analysis
What if the predictor and interpreter disagree in their outputs?

® if the class predicted by f is among the top predicted classes of g,
the disagreement is acceptable to some extent as the attributes can
still potentially interpret the prediction of f.

® The worse kind of samples — where prediction of f is not among top
predictions of g, and even worse are where, in addition to this, f
predicts the true label.

® Measure top-k fidelity. For QuickDraw: top-2 — 94.7%, top-3 —
96.9%, and top-4 — 98.2%

Figure 13: The three "Apple’ class samples classified cor-
rectly by f but not by g.
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Appendix 7: Importance of Attributes

® To test how crucial the learnt attributes are to predictions of
FLINT-g and SENN, we shuffle the attribute values ®(x) for each
sample x and calculate the drop in prediction accuracy.

® Extreme test, therefore a significant drop in accuracy is expected

Dataset SENN  FLINT-g
MNIST 0.5 87.6
FashionMNIST 10.9 76.6
CIFAR-10 17.5 74.4
QuickDraw 0.3 74.9

Table: FLINT and SENN accuracy drop for shuffled attributes (in %)




