Vision Transformer for femur fracture classification

Leonardo Tanzi¹, Andrea Audisio², Giansalvo Cirrincione³, Alessandro Aprato², Enrico Vezzetti²

> ¹Polytechnic University of Turin ²University of Turin ³University of Picardie Jules Verne

> > Published Paper on Injury

Article on Medium

Table of Contents

1. Introduction

- •Overview
- •AO classification
- •Dataset
- Baselines

2. Methods

- •Transformer and Self-Attention
- Vision Transformer
- Model selection

3. Results

- •Comparison with baselines
- •Specialists' evaluation

4. Discussion

- •Attention maps
- Comparison with SOTA
- •Limitations and future works

• 1. Introduction

•

0

1.1 Introduction

Implementing a CAD (Computer Assisted Diagnosi system in doctors' workflow might directly impact patients' outcomes

1.2 Overview

1.3 AO Classification

The AO classification is hierarchical and provides a well-defined methodology for assessing fractures correctly

1.4 Dataset Creation

1.5 Dataset Samples

Unbroken

1.6 Baselines

2. Methods

0

0

+

2.1 Transformer Intuition

The transformer's original architecture was composed of a series of encoders followed by a series of decoders

2.2 Self-Attention Intuition

Self-Attention is a method to understand the relevant words in a sentence in relation to the one you're currently processing.

"The animal didn't cross the street because *it* was too tired" \rightarrow What does "*it*" in this sentence refer to?

When the model is processing the word *"it"*, self-attention allows to associate *"it"* with *"animal"* (and other relevant words)

Self-Attention relies on three matrixes: **Query (Q)**, **Key (K)**, and **Value (V)**

"A crude analogy is to think of it as searching through a filing cabinet. The Query is the note with a tag of the topic you're researching. The Keys are the labels of the folders inside the cabinet. When you match the tag with a note, we take out the content of that folder, this content is the Values vector"

2.3 Self-Attention in Details

We want to apply self-attention to the sentence "Thinking machines"

- 1) Embed words to tokens
- For each token, compute Query, Key and Value by multiplying each token for three learnable and shared matrixes W_q, W_k and W_v
- 3 To compute self-attention for the first token, multiple its Q by all the other K to obtain the **Score (S)**
- 4 Divide by $\sqrt{d_k}$ and pass through a Softmax
- 5 Multiply the results for the V vector
- 6 Sum all the V to obtain the final Z vector

$$SA = softmax\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

2.4 Multi-Head Self-Attention

Considerations on **Q**, **K**, **V**, and **S**:

- *Q* is a representation of the current token used to score against all the other token
- *K* can be seen as a set of labels that we match against *Q* in our search for relevant words
- *V* contains actual word representation
- *S* determines the amount of focus to put on each token

In practice, more than one head is used (**multi-head self-attention**), in order to have multiple representation. The multiple output are multiplied by a learnable matrix W_0 used to keep the dimension fixed

2.5 Vision Transformer

ViT was applied in this paper, one of the first vision solutions leveraging self-attention

2.6 ViT for femur fractures

The main idea behind the use of the Transformer in this work is its global attention

Comparing each token with each other token is an approach very similar to the one used by specialists

2.7 Model Selection

Architecture	Precision	Recall	F1-score
B16	0.77	0.74	0.75
	(CI 0.67-0.88)	(CI 0.59-0.88)	(CI 0.63-0.87)
B32	0.67	0.65	0.65
	(CI 0.51-0.83)	(CI 0.48-0.83)	(CI 0.49-0.81)
L16	0.77	0.76	0.77
	(CI 0.64-0.90)	(CI 0.62-0.91)	(CI 0.64–0.89)
L32	0.71	0.65	0.66
	(CI 0.59-0.83)	(CI 0.48-0.82)	(CI 0.53-0.80)
ССТ	0.39	0.38	0.38
	(CI 0.18-0.59)	(CI 0.12-0.65)	(CI 0.15-0.60)

2.8 Full Pipeline

3. Results

0

0

+

•

3.1 Comparison with Baselines

CNN

CNN	Precision	Recall	F1-score	# Images
A1	0.42	0.53	0.47	91
A2	0.65	0.43	0.51	94
A3	0.65	0.60	0.63	25
B1	0.59	0.61	0.60	90
B2	0.43	0.45	0.44	49
B3	0.43	0.19	0.26	16
Unbroken	0.85	0.89	0.87	282
Macro AVG	0.57 (CI 0.42-0.72)	0.53 (CI 0.33-0.72)	0.54 (CI 0.36-0.71)	

Hierarchical CNN

Hierarchical CNN	Precision	Recall	F1-score	# Images
A1	0.36	0.51	0.42	91
A2	0.50	0.21	0.30	94
A3	0.20	0.32	0.24	25
B1	0.51	0.70	0.59	90
B2	0.59	0.20	0.30	49
B3	0.11	0.06	0.08	16
Unbroken	0.87	0.88	0.87	282
Macro AVG	0.44 (CI 0.21-0.68)	0.41 (CI 0.14-0.69)	0.40 (CI 0.15–0.64)	

ViT	Precision	Recall	F1-score	# Images	
A1	0.66 (†24%)	0.66 (†23%)	0.66 (†19%)	91	
A2	0.77(†12%)	0.66 (†23%)	0.71 (†20%)	94	
A3	0.92 (†30%)	0.92 (†32%)	0.92 (†29%)	25	
B1	0.74 (†15%)	0.93 (†23%)	0.82 (†22%)	90	ViT-L16
B2	0.79 († 20%)	0.69 (†24%)	0.74 (†30%)	49	
B3	0.56 (†13%)	0.56 (†37%)	0.56 (†30%)	16	
Unbroken	0.95 (†8%)	0.94 (†5%)	0.95 (†8%)	282	
Macro AVG	0.77 (†20%) (CI 0.64-0.90)	0.76 († 23%) (CI 0.62-0.91)	0.77 († 23%) (CI 0.64–0.89)		

3.2 Specialists Evaluation

Specialist	Years of experience	Accuracy without CAD	Accuracy with CAD	Accuracy Improvement
Resident #1	2	0.55	0.90	0.35
Resident #2	1	0.55	0.89	0.34
Resident #3	2	0.53	0.98	0.45
Resident #4	4	0.69	1.00	0.31
Resident #5	3	0.63	0.98	0.35
Resident #6	2	0.53	0.96	0.43
Resident #7	3	0.64	0.98	0.34
Radiologist #1	10	0.81	1.00	0.19
Radiologist #2	15	0.90	1.00	0.10
Radiologist #3	7	0.80	1.00	0.20
Radiologist #4	13	0.87	1.00	0.13
Residents' Average		0.58 (CI 0.53 – 0.65)	0.96 (CI 0.92 – 0.99)	0.37 (CI 0.32 – 0.42)
Radiologists' Average		0.84 (CI 0.77 – 0.92)	1.00	0.15 (CI 0.08 – 0.23)
Total Average		0.68 (CI 0.59 – 0.78)	0.97 (CI 0.94 – 1.00)	0.29 (CI 0.12 – 0.37)

+

4.1 Attention Maps

The attention maps, after being analyzed by a team of clinicians, showed how the network correctly focused on the trochanteric area for the *A* class, the neck and the greater trochanter for the *B* class, and around the whole cortex for the *Unbroken* class.

4.2 Comparation with SOTA

Paper	Method	Dataset	F1-score	Additional Notes
Our	ViT	2043 samples	0.77	
Lee et al. ¹	InceptionV3 followed by FCN and LSTM	786 samples, with 1, 6, and 8 samples, respectively, used to validate classes <i>B3</i> , <i>B1</i> , and <i>A3</i>	0.50	It also leverage text annotations, which are usually very hard to collect
Kazi et al. ²	Attention module to locate the femur area followed by an InceptionV3 network	1173 samples, with 15 samples for A3 fractures	0.68	The class unbroken was not considered for multi-class classification

¹Lee C, Jang J, Lee S, Kim YS, Jo HJ, Kim Y. Classification of femur fracture in pelvic X-ray images using meta-learned deep neural network. Scientific Reports, 2020

²Kazi A, Albarqouni S, Sanchez AJ, Kirchhoff S, Biberthaler P, Navab N, et al. Automatic classification of proximal femur fractures based on attention models. Machine learning in medical imaging, 2017

1) The evaluation was done through a web interface

Limitation	Possible Solution
 Specialists were not in a situation of stress The short two weeks period between the two evaluations may have created a bias 	 Further clinical studies in everyday routine Wait more time before the second evaluation or utilize different sets of images with the same level of difficulty

2) Dataset imbalance and under-represented classes

	Limitation	Possible Solution
•	Not enough samples Data augmentation create fake fractures	Generative Adversarial Networks. How to use them to augment data in a reliable way?

3) Not leveraging the hierarchical structure

Limitation	Possible Solution
We are ignoring some information that could be very useful, especially for under-represented leaf nodes	Hierarchical lossStop before predictionNew metric

Different level have different set of labels, in this case we have:

 $s_1 = \{A, B\}$ $s_2 = \{A1, A2, A3, B1, B2\}$

We can define a loss as the sum of two weighted cross-entropy losses:

 $L = \alpha L_{fine} + L_{coarse}$

Extract intermediate representations and exploit the parallelism between subsequent layers in CNN and hierarchy by extracting tokens and use them to train a self-attention module

This idea was inspired from: Koo, J., Klabjan, D., and Utke, J. (2018). <u>Combined convolutional and</u> <u>recurrent neural networks for</u> <u>hierarchical classification of</u> <u>images.</u>

Thank you for your attention

0

Contacts <u>leonardo.tanzi@polito.it</u> <u>Website</u> <u>Medium</u>

0