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Let’s Play a Game...

Which face is real?

This one!
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Generative Modeling

A discriminative model is a way to model the conditional probability of a target
Y (low-dimension) given some covariates X (high-dimension).
Conversely, a generative model tries to model the conditional probability of X,
possibly conditionally to Y .

Figure: Sampling from P pX | Y q on MNIST using a ConditionalGan (Mirza
et al., 2014).

Many applications: art, image manipulation, robustness, physics & finance,
etc.
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Art: Edmond de Belamy

Figure: Edmond de Belamoy
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Merchandising: Virtual Try-on Problem

Figure: vue.ai
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Robustness: Attacking Classifiers with GANs

Figure: C. Xiao et al., 2018

Generative Models: old and new. 6 / 96



Robustness: Defending Classifiers with GANs

Figure: Samangouei et al., 2018
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Physics & Finance
Using GANs to solve SDEs (L. Yang et al., 2018).
Synthetic data generation (Takahashi et al., 2019) and Monte Carlo simulation
of SDEs using GANs (Rhijn et al., 2021).

(a) Simulating MCMC with GANs: C. Xiao
et al., 2018.

Market prediction (Xingyu et al., 2018): a model that learns the properties of
data without explicit assumptions or mathematical formulations.
Pricing options with GANs.
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Many Types of Deep Generative Models

In this course, we will focus on the three main types of models that have
been used for image generation.

GANs frame generative modeling, an unsupervised learning problem, as a
supervised one.
VAEs indirectly optimize the log-likelihood of the data by maximizing the
evidence lower bound (ELBO).
Diffusion models recover the data from pure noise by learning how to invert
destructive image perturbations.

Other types of models exist.
Normalizing flows are defined as sequences of provably invertible
transformations.
Autoregressive models generate samples dimension by dimension (pixel by
pixel, word by word).

Both directly optimize the log-likelihood.

Generative Models: old and new. 9 / 96



Many Types of Deep Generative Models

In this course, we will focus on the three main types of models that have
been used for image generation.

GANs frame generative modeling, an unsupervised learning problem, as a
supervised one.
VAEs indirectly optimize the log-likelihood of the data by maximizing the
evidence lower bound (ELBO).
Diffusion models recover the data from pure noise by learning how to invert
destructive image perturbations.

Other types of models exist.
Normalizing flows are defined as sequences of provably invertible
transformations.
Autoregressive models generate samples dimension by dimension (pixel by
pixel, word by word).

Both directly optimize the log-likelihood.

Generative Models: old and new. 9 / 96



Outline
Introduction

Motivation
Generative Networks

Generative Adversarial Nets
Vanilla GANs from Goodfellow et al., 2014
Wasserstein GANs (Arjovsky, Chintala, et al., 2017)
Conditional GANs

Variational AutoEncoders
VAEs
From VAEs to VQGANs

Diffusion & Score-based models
Introduction
Theory of diffusion models
Understanding score-based models
Diffusion & GANs

Challenges of Large Generative Models
Large generative diffusion models

Some open questions

Generative Models: old and new. 9 / 96



Generating Data from Noise

Generator Network
A generator gθ is a network mapping samples z from a known distribution
pz over Rd to parameters of a higher-dimensional distribution G over RD:

pθ : z „ pz, x „ Gpgθpzqq.

gθ, G and pz define a generated distribution pθ:

pθpxq “

ż

z

pθpx | zqppzq dz.

The modeled distribution is defined as a push-forward distribution.
Examples:
§ For GANs, G is a Dirac: x “ gθpzq.
§ For VAEs, G is usually a Gaussian: x „ N pgµθ pzq, gσθ pzqq.
Usually, d ! D.

Generative Models: old and new. 10 / 96



How to Train a Generator?
Objective
Choose a distance/divergence D. pθ « pdata by having Dppdata ∥ pθq « 0.

In practice
We can choose D “ DKL (the KL divergence).

DKLppdata ∥ pθq “ Ex„pdata
log

pdatapxq

pθpxq

“ ´Ex„pdata
log pθpxq ´ Hppdataq.

We would like to maximize the log-likelihood Ex„pdata log pθpxq.
Intractable in the general case (hard to calculate or impossible):

pθpxq “

ż

z

pθpx | zqppzqdz.

Let’s see two tricks to tackle this problem.
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Trick 1: Normalizing Flows

z0 z1
f1pz0q

zi zi`1

fi`1pziq. . .
fipzi´1q

zk. . .
fkpzk´1q

“ x

z0 „ p0pz0q zi „ pipziq zk „ pkpzkq

Janosh Riebesell. MIT license.

Principle
If gθ “ fk ˝ . . . ˝ f1 with invertible fis (d “ D), then:

pθpxq “ pzpg´1
θ pxqq

ˇ

ˇ

ˇ
det Jacxpg´1

θ q

ˇ

ˇ

ˇ
.

Ñ Architecture difficult to design; used for specific applications.
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Trick 2: Autoregressive Models

Oord et al. (2016).

Principle
Generate x dimension by dimension, component by component:

pθpxq “

n
ź

i“1

pθpxi | xăiq.

Ñ Computationally heavy and more adapted to NLP.
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Model Comparisons

Model Sampling Training Stability Results Efficiency

Flows Generator Exact NLL OK
Insuffi-

cient for
images

Fast

AR
Auto-

regressive
generator

Exact NLL OK SOTA Pro-
hibitive
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Moving away from likelihood (1)

GANs circumvent the problem
with adversarial training.
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GANs (Goodfellow et al., 2014)

Source: medium.
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Motivation: Generating Artificial Contents.

Pros
Simple generation.
Work extremely well with high-dimensional data.
Allow manifold discovering: image interpolation.

Abdal et al., 2019.

Cons
Unknown probability density function: we cannot easily check low density areas.
Tricky training.

Generative Models: old and new. 17 / 96

https://arxiv.org/pdf/1904.03189v1.pdf


The Data
Data:

Ź Target distribution: probability measure µ‹ on RD.
Ź Finite-samples: X1, . . . , Xn i.i.d. as µ‹. µn: empirical measure.
Ź Objective: how can we sample from µ‹?

Latent variable:

Ź Z defined on Rd.

Ź Z is typically uniform or Gaussian.

Ź d ! D: the manifold hypothesis.

Shao et al., 2018.

Generative Models: old and new. 18 / 96



Generator & Discriminator

Generator: a parametric family of functions from Rd to RD.
Ź Each Gθ is a neural network.

Ź Definition: GθpZq
L
„ µθ.

Ź Notation: G “ tGθ : θ P Θu, Θ Ă RP .

Ź Associated family of distributions: P “ tµθ : θ P Θu.

Ź Each µθ is a candidate to represent µ‹.

Discriminator: a parametric family of functions from RD to R.
Ź Notation: D “ tDα : α P Λu, Λ Ď RQ.

Ź In GANs algorithms, each Dα is a neural network.

Ź Dα is trained to distinguish between real and fake samples.

Generative Models: old and new. 19 / 96



Adversarial Principle

Objective: two-player game, looking for a Nash equilibrium to

inf
θPΘ

sup
αPΛ

”

E logpDαpXqq `E logp1 ´ DαpGθpZqqq

ı

.

Ź The higher Dpxq, the higher the probability that x is drawn from µ‹.

Ź The generator and the discriminator have opposite objectives.

Ź Forget: estimation by maximum likelihood.

Ź Forget: a strategy based on nonparametric density estimation.
Empirical version:

inf
θPΘ

sup
αPΛ

” 1

n

n
ÿ

i“1

logpDαpXiqq `E logp1 ´ DαpGθpZqqq

ı

.

The min-max optimum is found by alternating stochastic gradient descent.
Generative principle: θ̂n Ñ Gθ̂n

Ñ Gθ̂n
pZ1q, Gθ̂n

pZ2q . . . Ñ new images.
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GANs: (A Bit of) Theory

Let us denote
§ µ the density of the true data
§ µG “ Gpµnoiseq the density of the data generated by a generator G
Our main goal is to find G that minimizes a well-chosen distance between µ
and µG

Intuition: the performance of the best discriminator mesures this gap between
µ and µG (the bigger the gap, the better the optimal discriminator).

Can we formalize this intuition ?
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GANs: (A Bit of) Theory

Solving the Inner Optimization Problem
The optimal discriminator (without regularization) D˚

G is

x ÞÑ
µpxq

µpxq ` µGpxq
.

The corresponding loss at this point is

LGpD˚
Gq “ 2DJSpµ, µGq ´ log 4 ,

where DJS is the Jensen-Shannon divergence (symmetric variant of the
KL-divergence).

Training the GAN ” finding G that minimizes DJSpµ, µGq

Generative Models: old and new. 22 / 96



The Role of the Discriminator

In practice, one has always D “ tDα : α P Λu

sup
αPΛ

”

E logpDαpXqq ` E logp1 ´ DαpGθpZqqq

ı

acts like a divergence between the distributions µθ and the empirical
distribution µn.

Neural net divergence (Arora et al., 2017).
Adversarial divergence (Liu et al., 2017).
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Other Variants of GANs

Least squares GANs (Mao et al., 2017), related to the Pearson-ξ2 div.:

(discr. objective) sup
αPΛ

n
ÿ

i“1

pDαpXiq ´ 1q
2

`

n
ÿ

i“1

DαpGθpZiqq
2,

(gen. objective) inf
θPΘ

n
ÿ

i“1

pDαpGθpZiqq ´ 1q
2.

Nowozin et al. (2016) proposed f-GANs and showed that any f-divergence can
be used for training GANs:

inf
θPΘ

sup
αPΛ

EDαpXq ´ Epf‹
˝ DαqpGθpZqq, f‹ convex conjugate.

WGANs.
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GANs: Alchemy?

Lots of “hacks” to stabilize the training:
Normalize the inputs
min logp1 ´ Dq (saturating) vs max logpDq (non-saturating) for the generator
Choose the noise prior wisely
BatchNorm on full real / fake images
Avoid Sparse Gradients (ReLu Ñ LeakyReLu)
Use soft / noisy labels
Choose the optimizers wisely (e.g. Adam for G, SGD for D), decay rates for
Adam are important
Exponential moving average on the generator’s parameters
. . .

(e.g. https://github.com/soumith/ganhacks)
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GANs: Pathological behaviors

Oscillation / bad convergence
Due to alternating optimization to solve the minimax game / find a Nash

equilibrium

Unstability / divergence

Mode collapse
Happens when the training data is multi-modal (which is usually the case in

practice): can be a good strategy for the generator to target the easiest mode
of the target distribution (pullover in the example below)

Breathrough: the theoretical study by Arjovsky, Chintala, and Bottou (2017)

The Jensen-Shannon divergence does not allow to take into account the
metric structure of the space.

The authors propose WGANs which have become a standard in machine
learning.
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GANs training problems

From Roth et al., 2017, there are three different challenges for learning the
model distribution:

empirical estimation: the model family may contain the true distribution, but
one has to identify it based on a finite training sample.

density misspecification: there exists no parameter for which these densities
are similar.

dimensional misspecification: the model distribution and the true distribution
do not have a density function wrt the same base measure (supp(P)

Ş

supp(Q) may be negligible).

Generative Models: old and new. 27 / 96



GANs vs Flows: an interesting comparison

Setting
Let Rd be the latent space with latent variable Z.
Let G “ tGθ, θ P Θu be a class of invertible functions.

Pros
Simpler architecture & simpler loss: likelihood.
Less prone to mode collapse. Especially, when compared to cGANs (known to
be nearly deterministic).
Super Resolution image generation Lugmayr et al., 2020.

Cons
The input and output dimensions must be the same.
The transformation must be invertible.
The latent space is still high dimensional, so it’s harder to play with it.

Generative Models: old and new. 28 / 96



Visual comparisons Flow vs GANs

Figure: Left:StyleGAN. Right: Glow.
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Wasserstein GANs

They propose to go with the Wasserstein distance DW1 .

DW1pµ, νq “ inf
γPΓpµ,νq

ż

dpx, yq dγpx, yq

Continuous "earth moving distance"

Generative Models: old and new. 30 / 96



Wasserstein GANs (cted)

Advantages of DW1 over DJS ?

DW1pµ, νq “ 2 ą DW1pµ, γq “ 1.5

DJSpµ, νq “ 0.20 ă DJSpµ, γq “ 0.25

Problem: How to compute argminG DW1
pµ, µGq ?
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Wasserstein GANs (cted)

Using Kantorovich-Rubinstein duality theorem, WGANs aim to solve:

DW1pµ, µGq “ max
}D|Lď1

”

EX„µ

“

DpXq
‰

´ EX„µG

“

DpXq
‰

ı

,

where }D|L is the Lipschitz semi-norm equal to

max
x,y

}Dpxq ´ Dpyq}

}x ´ y|
.

We get a new loss for the discriminator !
WGANs: in practice, one always has a parametric D “ tDα : α P Λu:

inf
θPΘ

sup
αPΛ

|Eµ‹Dα ´EµθDα| “ ??

Empirical WGANs:

inf
θPΘ

sup
αPΛ

” 1

n

n
ÿ

i“1

DαpXiq ´EDαpGθpZqq

ı

“ ??
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Understanding the benefits of WGANs

Figure: From Arjovsky and Bottou, 2017
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Controlling the Gradient of the Discriminator?

The compactness requirement is classical when parameterizing GANs.
Weight clipping (Arjovsky, Chintala, et al., 2017).

Gradient penalty (Gulrajani et al., 2017).

Spectral normalization (Miyato et al., 2018).

Block orthonormalization.

This opens a whole new focus for the study of 1-Lipschitz neural networks
(Béthune et al., 2022; Tanielian and Biau, 2021).
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Advantages of WGANs

Wasserstein Distance is continuous and almost differentiable everywhere, which
allows us to train the model to optimality.

JS Divergence locally saturates as the discriminator gets better, thus the
gradients becomes zero and vanishes.

Wasserstein distance is a meaningful metric, i.e, it converges to 0 as the
distributions get close to each other and diverges as they get farther away.

The mode collapse problem is also mitigated when using Wasserstein distance
as the objective function.

Generative Models: old and new. 35 / 96



Understanding the performance of WGANs

dLip1
pµ‹, µθ̂n

q ď εestim ` εoptim ` inf
θPΘ

dLip1
pµ‹, µθq

“ εestim ` εoptim ` εapprox

Ź εestim “ sup
θnPΘ̂n

“

dLip1
pµ‹, µθnq ´ dLip1

pµ‹, µθ̄nq
‰

(data)

Ź εoptim “ sup
θ̄PΘ̄

dLip1
pµ‹, µθ̄q ´ inf

θPΘ
dLip1

pµ‹, µθq (metric discrepancy)

Ź εapprox “ inf
θPΘ

dLip1
pµ‹, µθq (model)

We can now decompose the performance in three distinct losses
compared to the classic bias/variance trade off.
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Synthetic Experiments
Setting: µ‹ is a mixture of Gaussian densities with 2, 4 or 9 components.
A family of generators: tGp : p “ 2, 3, 5, 7u.
A family of discriminators: tDq : q “ 2, 3, 5, 7u.

We draw X1, . . . , Xn drawn from µ‹ with n “ 5000.
We plot the performance: supθnPΘ̂n

dLip1pµ‹, µθ̂n
q ď εestim ` εoptim ` εapprox.

(a) K “ 2.

q=2 q=3 q=5 q=7

p=7

p=5

p=3

p=2

4.499 2.55 1.421 0.867

1.285 0.661 0.661 0.761

0.78 0.718 0.743 0.491

0.552 0.785 0.711 0.444

(b) K “ 4.

q=2 q=3 q=5 q=7

p=7

p=5

p=3

p=2

6.364 5.274 3.576 1.364

1.396 3.864 1.412 1.403

1.523 1.461 1.32 1.348

1.425 1.397 1.295 1.287

(c) K “ 9.

Figure: dLip1pµ‹, µθnq for different generator’s and discriminator’s capacity.
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A too small discriminator facilitate instability and
mode collapse

Figure: Left: Discriminator’s depth=2, Generator’s=4. Right: Discriminator’s
depth=5, Generator’s=4
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Scaling WGAN and Gradient Penalties
The gradient penalty can be used with many other losses.
Many SOTA models have been trained with hinge or vanilla losses combined
with a gradient penalty.

BigGAN (Brock et al., 2019):
large-scale analysis for training on
ImageNet with many insights and
hacks.

StyleGAN (Karras et al., 2019):
introduced new style-based generator
for hierarchical generation.

Generative Models: old and new. 39 / 96
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Conditional GANs

Introduced by Mirza et al. (2014): use of a conditioning input into your GAN.
The conditionning input is given both to the generator and the discriminator

When dealing with disconnected manifolds:
Khayatkhoei et al. (2018) use of multiple generators.
Tanielian, Issenhuth, et al. (2020): gradient’s based truncation.
cGANs solve easily this problem by adding disconnectedness in the latent space.
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Conditional GANs and paired datasets

Formalization
We have a dataset D made a paired items tpx1, y1q, . . . , pxn, ynqu with
both conditioning item and a target image. The conditioning can be
anything (text, image, . . . ). By using both elements, we can add a
reconstruction term to the GAN loss.

This enables us to solve the following tasks.
Text-to-Image translation: StackGANs (Zhang et al., 2017).
Image-to-Image translation: Pix2Pix (Isola et al., 2017).
Semantic-Image-to-Photo translation (T.-C. Wang et al., 2018).
Image inpainting (Wu et al., 2019).
Super resolution (Ledig et al., 2017).

The unpaired case can also be tackled (Zhu et al., 2017).
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Examples
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Image manipulation with GANs & CLIP
CLIP jointly trains an image encoder and text encoder.
Trained on 400 million (image, text).
The training objective: given a batch of N (image, text) pairs, predicting which
of the N × N possible (image, text) pairings across a batch actually occurred.

StyleCLIP and VQGAN-CLIP Crowson et al., 2022 both combine GANs
and CLIP, and trains a latent optimization in W` (but it requires a few
minutes of optimization) .
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Model Comparisons

Model Sampling Training Stability Results Efficiency

GANs Generator Min-max Nash
equilibrium

Sharp
but mode
collapse

Fast

Flows Generator Exact NLL OK
Insuffi-

cient for
images

Fast

AR
Auto-

regressive
generator

Exact NLL OK SOTA Pro-
hibitive
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Moving away from likelihood with VAEs

VAEs circumvent the problem
with the ELBO

(evidence lower bound).
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Autoencoders

Main idea: force a self-supervised network to compress the original
representation in a low-dimensional latent space.

f z g

The goal is to learn an encoder f and a decoder g such that g ˝ f is close to
identity.
If f and g are linear, the optimal solution is given by a PCA.
Otherwise, we can achieve better performance with deep networks.
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Deep Autoencoders

(by courtesy of François Fleuret)
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How to sample from autoencoders ?
Simple answer: sample z in the latent space and feed it into the decoder
However it is very likely that the encoded inputs lies in a low-dimensional
manifold inside the latent space

Figure: From https://towardsdatascience.com/intuitively-understanding-
variational-autoencoders-1bfe67eb5daf
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VAEs as probablistic autoencoders

AEs can lead to severe overfitting: some points of the latent space will give
meaningless content once decoded.
How can we regularize autoencoders?
Let us constraint the latent variable z to follow a fixed distribution from
which we can sample easily.
Let’s rewrite everything with probabilities!

x pθpz|xq z pθpx|zq x1

pθpz | xq is intractable since we do not know the distribution of the true data
so we approximate it by the variational distribution qϕpz | xq that should
minimize:

DKLpqϕpz | xq ∥ ppz | xqq.
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VAEs’ principles

VAEs can be defined as being an autoencoders whose training are
regularised to avoid overfitting and ensure that the latent space has good
properties that enable generative process.

First, the input X is encoded as distribution over the latent space.

Second, a point z from the latent space is sampled from that distribution p.

Third, the sampled point is decoded and the reconstruction error can be
computed.

Finally, the reconstruction error is backpropagated through the network.
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VAEs and log-likelihood

Lemma
For any variational distribution qϕ, the (true) marginal log-likelihood
log pθpxq can be written as

log pθpxq “ DKLpqϕpz | xq ∥ pθpz | xqq ` Lθ,ϕ.

Note that:
Lθ,ϕ is called the variational lower bound since log pθpxq ě Lθ,ϕ.
For a fixed θ, minimizing the KL-divergence wrt ϕ is similar to maximize Lθ,ϕ.
For a fixed ϕ, maximizing Lθ,ϕ wrt θ, maximizes the expected log-likelihood of
the data.
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VAEs loss function
Let’s summarize!

The loss function to minimize is ´Lθ,ϕ and can be rewritten as:

´Ez„qϕpz|xq

“

log pθpx | zq
‰

` DKLpqϕpz | xq ∥ pθpzqq .

The first term is called the reconstruction loss: if pθpx | zq is Gaussian, then it
becomes an MSE.
The second term can be seen as a regularizer toward the prior distribution of
the latent variable pθ.

Figure: From towardsdatascience
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One last problem! How to backprop?

We need to be very careful about the way we sample from the distribution
returned by the encoder during the training.

Problem: Impossible to backpropagate through a stochastic node like z.

x f

µz

σz

z g x

Solution (ex. for a Gaussian posterior): Let’s write z “ µz ` σz d ϵ with
ε „ N p0, 1q to have a differentiable path end-to-end.

x f

µz

σz

z

ε

g x

Reparametrization trick
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From VAEs to VQGANs

Van Den Oord et al. (2017) propose a Vector Quantized VAE. It differs
from VAEs in two key ways:

The encoder network outputs discrete, rather than continuous, codes.
The prior is learnt rather than static.

The consequences are:
It allows the model to circumvent issues of “posterior collapse” (i.e. when the
signal from the encoder is either too weak or too noisy, and as a result,
decoder starts ignoring samples drawn from the posterior).
The discretization is done via a step of quantization.
The prior distribution over the discrete latents ppzq is a categorical distribution.
It and can be made autoregressive by depending on other z in the feature map.
Esser et al. (2021) propose to add an adversarial loss to VQVAE to obtain
VQGAN.
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Vector-quantized latent space

Figure: Introduction of VQGANs from Esser et al., 2021.
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Unifying NLP and Computer Vision

VQGAN aims at training a triplet pE,D,Cq (encoder, decoder, codebook).

With a trained encoder E, for any dataset of images D, one can create a
dataset of sequences DS .

One can train any language model on DS (Transformers, RNN, etc...), to be
able to generate likely sequences.

After that, use the decoder to decode them into images.

TLTR, all the known language models (including the newest LLMs) can now
be used to generate images.
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Generating images with Transformers
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Properties of this VQ latent space (1)

Figure: Each VQGAN token is strongly tied to a small spatial area in the image
space. Perturbed images lead to variations of tokens in the latent space.
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Properties of this VQ latent space (2)

Figure: Each VQGAN token is strongly tied to a small spatial area in the image
space. Collages of images can easily be done with collages of latent
representations.

Generative Models: old and new. 59 / 96



Properties of this VQ latent space (3)

Figure: From Issenhuth et al., 2021: one of the PBS from the VQGAN discrete
space is that it can have a lower ability to reconstruct images.
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Image manipulation with VQGANs

Figure: From Issenhuth et al., 2021: one can train a discrete space model to
manipulate images.
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Text-to-Image models with a VQ latent space

Two famous large scale models are based on this reconstruction
DALLE (Ramesh, Pavlov, et al., 2021):
Pathways Autoregressive Text-to-Image model (PARTI, Yu et al., 2022)

Some numbers:
Detailed comparisons of four scales of Parti models – 350M, 750M, 3B and
20B – and observe consistent improvements.
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Model Comparisons

Model Sampling Training Stability Results Efficiency

GANs Generator Min-max Nash
equilibrium

Sharp
but mode
collapse

Fast

VAEs Generator ELBO
(AE + KL) Collapsing Blurry

images Fast

Flows Generator Exact NLL OK
Insuffi-

cient for
images

Fast

AR
Auto-

regressive
generator

Exact NLL OK SOTA Pro-
hibitive
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Moving away from likelihood with Diff. models

Diffusion models replace
the generator and instead
estimate the score function
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The rise of Diffusion models
Stable Diffusion (Rombach et al., 2022): 330 citations in a year (only 95
papers cited Goodfellow et al., 2020 in 2014-2015).
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Intuition

easy!
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

ÐÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝ
hard!

Generating by Inverting Noise

We know how to get noise from an image.

Diffusion models learn the reverse process to generate images from noise.
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Variational Approach

Ho et al. (2020).

qpxt | xt´1q: noise process, usually additive Gaussian noise:

qpxt | xt´1q “ N
´

a

1 ´ βtxt´1, βtI
¯

,

hence qpxt | x0q “ N
`?

αtx0, p1 ´ αtqI
˘

.

qpxt´1 | xtq: true unknown denoising process.
pθpxt´1 | xtq: parameterized, approximate denoising process.

For large enough T , qpxT q « N
´

0, σ2I
¯

, so we choose pθpxT q “ N
´

0, σ2I
¯

.

Similar to a hierarchical VAE, we have only access an ELBO can be derived;
difference: roles of the encoder and decoder switched.
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Parameterization & ELBO (Informal)

The variational lower bound gives:

log pθpxq ě Ex1:T „qpx1:T |x0q log
qpx1:T | x0q

pθpx0:T q
fi Lθ.

To keep all KLs between Gaussians and knowing qpxt | x0q, we choose:

pθpxt´1 | xtq “ N
´

µθpxt, tq, σ
2
t I

¯

,

µθpxt, tq “
1

?
1 ´ βt

ˆ

xt ´
βt

?
1 ´ αt

εθpxt, tq

˙

.

Intuitively, εθpxt, tq aims at reconstructing the noise ε „ N p0, Iq used to
perturb x0 into xt “

?
αtx0 `

?
1 ´ αtϵ.

Lθ “
ÿ

t

Ex0,ε fpαt, βt, σtq
›

›ε ´ εθ pxt, tq
›

›

2

2
, xt “

?
αtx0 `

?
1 ´ αtε.
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In Practice

Inference:
§ sample xT „ pθpxT q “ N

´

0, σ2I
¯

,

§ sequentially generate xts from pθpxt´1 | xtq until the final sample x0.
εθ is a large U-Net, or a transformer;

The loss function is usually simplified:

Lθ “
ÿ

t

Ex0,ε (((((
fpαt, βt, σtq

›

›

›

›

ε ´ εθ
´?

αtx0 `
?
1 ´ αtε, t

¯

›

›

›

›

2

2

.

Hundreds of diffusion steps are used to generate images: we would like to skip
some of them.

Change of Paradigm
The variational approach is not adapted!
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Score Function

The whole goal of score-based models is to train a neural network sθpxq to
learn ∇ log ppxq, called the score function:

∇x log pθpxq « sθpxq.

We can represent the score model as a neural network, trained by minimizing
the Fisher Divergence with the ground truth score function:
Eppxq

”

›

›sθpxq ´ ∇ppxq
›

›

2

2

ı

.

We don’t have access to the ground truth score function for real data, so we
use score matching approaches to minimize the Fisher divergence without the
ground truth.

How do we learn a function sθ : RD
Ñ RD such that sθpxq « ∇x log ppxq.

We estimate the score from a kernel density estimator qσpx̃q “ 1
N

ř

i qσpx̃|xiq,
such that sθpxq « ∇x log qσpxq « ∇x log ppxq.
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Score Function: Sampling

Score function is the gradient of the log likelihood with respect to data x

This gradient tells us what direction in data space to move in order to increase
the likelihood of x
Score function defines a vector field over the data space, pointing toward the
modes
We can generate samples by starting at any point and following the score until
we reach a mode, using Langevin dynamics:

xi`1 Ð xi ` c∇ log ppxiq `
?
2cϵ, i “ 0, 1, . . . ,K

§ x0 is sampled from a prior
§ ϵ „ N p0, Iq; ensures that we hover around a mode without collapsing into it,

and allows for stochastic trajectories
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Score Function: Sampling Trajectories

Figure 6: Visualization of three random sampling trajectories generated with Langevin dynamics, all starting
from the same initialization point, for a Mixture of Gaussians. The left figure plots these sampling trajectories
on a three-dimensional contour, while the right figure plots the sampling trajectories against the ground-
truth score function. From the same initialization point, we are able to generate samples from different
modes due to the stochastic noise term in the Langevin dynamics sampling procedure; without it, sampling
from a fixed point would always deterministically follow the score to the same mode every trial.

To begin to understand why optimizing a score function makes sense, we take a detour and revisit energy-
based models [12, 13]. Arbitrarily flexible probability distributions can be written in the form:

p✓(x) =
1

Z✓
e�f✓(x) (152)

where f✓(x) is an arbitrarily flexible, parameterizable function called the energy function, often modeled by
a neural network, and Z✓ is a normalizing constant to ensure that

R
p✓(x)dx = 1. One way to learn such

a distribution is maximum likelihood; however, this requires tractably computing the normalizing constant
Z✓ =

R
e�f✓(x)dx, which may not be possible for complex f✓(x) functions.

One way to avoid calculating or modeling the normalization constant is by using a neural network s✓(x) to
learn the score function r log p(x) of distribution p(x) instead. This is motivated by the observation that
taking the derivative of the log of both sides of Equation 152 yields:

rx log p✓(x) = rx log(
1

Z✓
e�f✓(x)) (153)

= rx log
1

Z✓
+rx log e�f✓(x) (154)

= �rxf✓(x) (155)
⇡ s✓(x) (156)

which can be freely represented as a neural network without involving any normalization constants. The score
model can be optimized by minimizing the Fisher Divergence with the ground truth score function:

Ep(x)

h
ks✓(x)�r log p(x)k22

i
(157)

What does the score function represent? For every x, taking the gradient of its log likelihood with respect
to x essentially describes what direction in data space to move in order to further increase its likelihood.

18

Figure: Figure from Luo, 2022
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Score Function Training: Noise Levels
Using multiple levels of Gaussian noise addresses the following issues with
score matching: ptpxtq “

ş

ppxqN px, σ2
t Iqdx (Song and Ermon, 2019).

Problem 1
Score function is ill-defined when x lies on a low-dimensional manifold in a
high-dimensional space
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Score Function Training: Noise Levels
Using multiple levels of Gaussian noise addresses the following issues with
score matching: ptpxtq “

ş

ppxqN px, σ2
t Iqdx (Song and Ermon, 2019).

Problem 2
Learned score function estimate obtained from score matching is not
accurate in low density regions

Adding Gaussian noise will increase the area each mode covers in the data
distribution, which adds more signal for training in low-density regions
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Score Function Training: Noise Levels
Using multiple levels of Gaussian noise addresses the following issues with
score matching: ptpxtq “

ş

ppxqN px, σ2
t Iqdx (Song and Ermon, 2019).

Problem 3
Langevin dynamics may not mix in the case where the true data is a
mixture of disjoint distributions and might hinder the accuracy of score
estimation.

Adding multiple levels of Gaussian noise with increasing variance will result in
intermediate distributions that respect the ground truth mixing coefficients.
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Slow mixing of Langevin dynamics
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Score Function: a recap

We then get back the same L̂θ as before:

L̂θ “

T
ÿ

t“1

λptqEx0„pdata,xt„pσt pxt|x0q

”

›

›sθpx, tq ´ ∇ log ptpxt | x0q
›

›

2

2

ı

§ λptq: Positive weighting function that is conditioned on noise level t
We use annealed Langevin dynamics to generate samples
§ Run Langevin dynamics for t “ T, T ´ 1, . . . , 2, 1 sequentially
§ Initialize from some fixed prior
§ Each sampling step starts from the final sample of the previous time step
§ Noise levels steadily decrease over time t, and we reduce the step size over

time, so the samples converge to the true mode
§ Similar to sampling a variational diffusion model
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Unifying diffusion & score-based models

We can generalize diffusion models to an infinite number of time steps or noise
scales Ñ continuous time.
From a score-based perspective, perturbation of the data can be represented as
a stochastic process, described by a stochastic differential equation (SDE).
Sampling requires reversing the SDE Ñ requires estimating the score function
at each continuous noise level.

Song, Sohl-Dickstein, et al. (2021).
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Beyond White Noise

Perturbations other than Gaussians are possible!

Bansal et al. (2022).
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Combining GANs and Diffusion

Replacing score by GANs in diffusion...

Denoising Diffusion GANs (Z. Xiao et al., 2022).
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Combining GANs and Diffusion

... training a noise-perturbed GAN (Sønderby et al., 2017)!

Diffusion GANs (Zhendong Wang et al., 2022).

To facilitate GANs training, Diffusion GANs use a diffusion process to
generate Gaussian-mixture distributed instance noise.
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Model Comparisons

Model Sampling Training Stability Results Efficiency

GANs Generator Min-max Nash
equilibrium

Sharp
but mode
collapse

Fast

VAEs Generator ELBO
(AE + KL) Collapsing Blurry

images Fast

Diffusion Differential
equation Denoising OK SOTA Slow

Flows Generator Exact NLL OK
Insuffi-

cient for
images

Fast

AR
Auto-

regressive
generator

Exact NLL OK SOTA Pro-
hibitive
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Text2Image model with diffusion

Diffusion models have been largely used for text2image generation.
Among the most famous works, we can name:

DALLE2 Ramesh, Dhariwal, et al., 2022: diffusion-based decoder conditionned
on a CLIP embedding. A two step learning: a prior that produces CLIP image
embeddings, and a decoder that generates images.

Imagen Saharia et al., 2022: use of pre-trainded large language models for text
encoder. Increasing the size of the language model in Imagen boosts both
sample fidelity and image-text alignment much more than increasing the size
of the image diffusion model.

Stable Diffusion 1 &2 Rombach et al., 2022: to increase both the
inference/training, and reduce the compute power, the diffusion is done in
latent space of powerful pretrained autoencoders.

Important note: only large scale text2image open-source generative model.
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Using CLIP as a conditioning

Figure: From Ramesh, Dhariwal, et al., 2022: reconstruction and interpolation
with CLIP diffusion.
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Challenge 1: problems when generating humans

Figure: From Ramesh, Dhariwal, et al., 2022: all large scale generative models
still have issues with generating humans: especially faces, hands.
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Challenge 2: spelling issues & hidden language

Figure: From Daras et al., 2022.
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Challenge 3: Customizing & Control
Finetuning the textual encoder: Textual inversion from Gal et al., 2022.
Finetuning the visual decoder with Dreambooth from Ruiz et al., 2022 +
details here.

Figure: Dreambooth example from Ruiz et al., 2022.
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Challenge 4: multi-modality

Figure: From Yu et al., 2022
Left: A shiny robot wearing a race car suit and black visor stands proudly in
front of an F1 race car. The sun is setting on a cityscape in the background.
comic book illustration.
Right: A plate that has no bananas on it. there is a glass without orange juice
next to it.
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Challenge 5: Filtering the data
The main goal is to reduce graphic and explicit training data.
But also to prevent image regurgitation.
Stable Diffusion: unfortunately, the filter dramatically cut down on the number
of people in the dataset and that meant folks had to work harder to get similar
results generating people.

Figure: From From DALLE’s blog: generations for the prompt “military protest”
from our unfiltered model (left) and filtered model (right). Notably, the filtered
model almost never produces images of guns.
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Interesting links and open-source models

LAION project: largest open source dataset and CLIP model here.

Stable Diffusion project Stability.ai.

A large list of examples for DALLE2 here.
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Latest developments with Midjourney
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AI wins art competitions

Figure: Jason M. Allen via Midjourney

Context: Mr. Allen submited one of his Midjourney creations to the
Colorado State Fair, which had a division for “digital art/digitally

manipulated photography.”
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Artists strike back
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Are GANs memorizing the dataset?

Few shot learning regime: memorization doable...
Huge dataset. K Ñ 8 ùñ underfitting, impossible to memorize ?

However, here is a recent observation:

Figure: Left: prompt "a beautiful green forest with a lake and snow -capped
mountains in the background". Right: Banff, Alberta, Canada.
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Are WGANs working because they fail ?

Figure: Left: W pµn, µ̃nq “ 51.40, Right: W pµn, µ
k
nq “ 40.15 (k-means)

(Stanczuk et al., 2021)

Interesting properties of convolutional networks ??

argmin
θPΘ

dDpµn, µθq ‰ argmin
θPΘ

dLip1pµn, µθq.

The discriminator punishes more samples out of the target manifold...
Failure of the L2 distance as a perceptual distance.
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Are difusion models better than GANs?

2022 has seen the rise of Diffusion models.

Better empirical results (FID). Is it fair?

First, large difference in the datasets they were trained on.
ImageNet (15 million) vs LAION (2-3 billions).

GANs are unstable: there is a significant difference in the losses used. DMs
might just be smoother.

DMs are easier to scale than GANs.

GANs may be still less understood than other models (room for improvement?).
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No free lunch theorem ? Generative Trilemna

Figure: There is a trade-off between performance, inference speed, and the
diversity Z. Xiao et al. (2022).
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What generative models can be applied to text?

Large Language Models have also risen these past few years.
OpenAI GPT1, GPT2, and GPT3.
OpenAI ChatGPT
All these models are autoregressive likelihood-based auto-regressive training
objectives.
Are latent spaces useful/necessary in this setting?

Some weak examples
GANs are ill-posed to deal with discrete outputs: calls for reinforcement
learning.
MALIGANs Che et al., 2017, discriminative search (Scialom et al., 2020).
Continuous (X. L. Li et al., 2022) or discrete (Reid et al., 2022) diffusion for
text.
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Thank you!

Any questions?
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